9 research outputs found

    Nondispersive solutions to the L2-critical half-wave equation

    Get PDF
    We consider the focusing L2L^2-critical half-wave equation in one space dimension itu=Duu2u, i \partial_t u = D u - |u|^2 u, where DD denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold M>0M_* > 0 such that all H1/2H^{1/2} solutions with uL2<M\| u \|_{L^2} < M_* extend globally in time, while solutions with uL2M\| u \|_{L^2} \geq M_* may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass u0L2=M\| u_0 \|_{L^2} = M_*. More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E0>0E_0 >0 and the linear momentum P0RP_0 \in \R. In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L2L^2-critical nonlinear PDE with nonlocal dispersion.Comment: 51 page

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Localized instabilities of the Wigner equation as a model for the emergence of Rogue Waves

    Get PDF
    In this paper, we model Rogue Waves as localized instabilities emerging from homogeneous and stationary background wavefields, under NLS dynamics. This is achieved in two steps: given any background Fourier spectrum P(k), we use the Wigner transform and Penrose’s method to recover spatially periodic unstable modes, which we call unstable Penrose modes. These can be seen as generalized Benjamin–Feir modes, and their parameters are obtained by resolving the Penrose condition, a system of nonlinear equations involving P(k). Moreover, we show how the superposition of unstable Penrose modes can result in the appearance of localized unstable modes. By interpreting the appearance of an unstable mode localized in an area not larger than a reference wavelength λ0 as the emergence of a Rogue Wave, a criterion for the emergence of Rogue Waves is formulated. Our methodology is applied to δ spectra, where the standard Benjamin–Feir instability is recovered, and to more general spectra. In that context, we present a scheme for the numerical resolution of the Penrose condition and estimate the sharpest possible localization of unstable modes. Keywords: Rogue Waves; Wigner equation; Nonlinear Schrodinger equation; Penrose modes; Penrose conditio

    Random data wave equations

    Full text link
    Nowadays we have many methods allowing to exploit the regularising properties of the linear part of a nonlinear dispersive equation (such as the KdV equation, the nonlinear wave or the nonlinear Schroedinger equations) in order to prove well-posedness in low regularity Sobolev spaces. By well-posedness in low regularity Sobolev spaces we mean that less regularity than the one imposed by the energy methods is required (the energy methods do not exploit the dispersive properties of the linear part of the equation). In many cases these methods to prove well-posedness in low regularity Sobolev spaces lead to optimal results in terms of the regularity of the initial data. By optimal we mean that if one requires slightly less regularity then the corresponding Cauchy problem becomes ill-posed in the Hadamard sense. We call the Sobolev spaces in which these ill-posedness results hold spaces of supercritical regularity. More recently, methods to prove probabilistic well-posedness in Sobolev spaces of supercritical regularity were developed. More precisely, by probabilistic well-posedness we mean that one endows the corresponding Sobolev space of supercritical regularity with a non degenerate probability measure and then one shows that almost surely with respect to this measure one can define a (unique) global flow. However, in most of the cases when the methods to prove probabilistic well-posedness apply, there is no information about the measure transported by the flow. Very recently, a method to prove that the transported measure is absolutely continuous with respect to the initial measure was developed. In such a situation, we have a measure which is quasi-invariant under the corresponding flow. The aim of these lectures is to present all of the above described developments in the context of the nonlinear wave equation.Comment: Lecture notes based on a course given at a CIME summer school in August 201
    corecore